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A B S T R A C T

Exposure to environmental contaminants early in life can have long lasting consequences for physiological
function. Polychlorinated biphenyls (PCBs) are a group of ubiquitous contaminants that perturb endocrine
signaling and have been associated with altered immune function in children. In this study, we examined the
effects of developmental exposure to PCBs on neuroimmune responses to an inflammatory challenge during
adolescence. Sprague Dawley rat dams were exposed to a PCB mixture (Aroclor 1242, 1248, 1254, 1:1:1, 20 μg/
kg/day) or oil control throughout pregnancy, and adolescent male and female offspring were injected with
lipopolysaccharide (LPS, 50 μg/kg, ip) or saline control prior to euthanasia. Gene expression profiling was
conducted in the hypothalamus, prefrontal cortex, striatum, and midbrain. In the hypothalamus, PCBs increased
expression of genes involved in neuroimmune function, including those within the nuclear factor kappa b (NF-
κB) complex, independent of LPS challenge. PCB exposure also increased expression of receptors for dopamine,
serotonin, and estrogen in this region. In contrast, in the prefrontal cortex, PCB exposure blunted or induced
irregular neuroimmune gene expression responses to LPS challenge. Moreover, neither PCB nor LPS exposure
altered expression of neurotransmitter receptors throughout the mesocorticolimbic circuit. Almost all effects
were present in males but not females, in agreement with the idea that male neuroimmune cells are more
sensitive to perturbation and emphasizing the importance of studying both male and female subjects. Given that
altered neuroimmune signaling has been implicated in mental health and substance abuse disorders that often
begin during adolescence, these results highlight neuroimmune processes as another mechanism by which early
life PCBs can alter brain function later in life.

1. Introduction

Polychlorinated biphenyls (PCBs) are environmental contaminants
that were used in industry for decades before being banned in the
United States in 1979 (Borja et al., 2005; Seegal, 2000; Tilson et al.,
1990). However, they are still found in the environment and in tissues
of virtually all humans due to their persistence and continued genera-
tion as an unintentional industrial byproduct (Borja et al., 2005;
Dewailly et al., 1999; Seegal et al., 2011; Shain et al., 1991). In
mammals, PCBs cross the placenta and are transferred from mother to
infant during lactation (DeKoning and Karmaus, 2000; Grandjean et al.,
1995; Heilmann et al., 2010; Tilson et al., 1990). This perinatal ex-
posure can affect development of immune, endocrine, and nervous
systems, and their interactions (Desaulniers et al., 2013; Weisglas-
Kuperus, 1998).

The effects of PCBs on peripheral immune function are well-studied.
In humans, PCB exposure has been linked to blunted adaptive immune
responses in infants and children (Dewailly et al., 2000; Heilmann
et al., 2010; Heilmann et al., 2006; Hochstenbach et al., 2012; Stolevik
et al., 2013; Weisglas-Kuperus et al., 2000), and proinflammatory ef-
fects in adults (Perkins et al., 2016; Turunen et al., 2013). There are
multiple potential mechanisms behind these effects, including produc-
tion of reactive oxygen species and altered activity of the nuclear factor
kappa b (NF-κB) complex (Abliz et al., 2016; Choi et al., 2010; Hennig
et al., 2002; Kwon et al., 2002; Sipka et al., 2008; Wang et al., 2019), an
important transcription factor for both inflammation and neural de-
velopment and plasticity (Lawrence, 2009; O'Neill and Kaltschmidt,
1997). PCBs and their metabolites also disrupt steroid hormone activity
(Abdelrahim et al., 2006; Bergeron et al., 1994; Grimm et al., 2015;
Hamers et al., 2011; Layton et al., 2002; Matthews et al., 2007; Seegal
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et al., 2005; Takeuchi et al., 2017; Tavolari et al., 2006). For example,
PCBs are known to act as both estrogen receptor agonists and antago-
nists (Gore et al., 2015; Hamers et al., 2011) which could indirectly
alter immune function due to estrogen's complex but generally im-
munosuppressive properties (Bellavance and Rivest, 2012; Bruce-Keller
et al., 2000; Klein and Flanagan, 2016; Loram et al., 2012; Villa et al.,
2016). Given that most mechanistic studies of PCBs on immune func-
tion were performed in cell lines or only in male animals, continued
investigation on the effects of PCBs on immune function in both males
and females is warranted.

Far less is known about neuroimmune effects of PCBs. We pre-
viously reported effects of prenatal PCB exposure on the neuroimmune
system of neonatal male and female rats (Bell et al., 2018), and (Hayley
et al., 2011) described effects of PCBs on brain cytokines in adult fe-
males. Epidemiological and laboratory research studies have demon-
strated that PCBs can induce neuronal dysfunction and death, especially
of dopaminergic and serotonergic cells (Bell et al., 2018; Boix and
Cauli, 2012; Dervola et al., 2015; Enayah et al., 2018; Kodavanti, 2006;
Pessah et al., 2010; Pessah et al., 2019; Seegal et al., 1988; Seegal et al.,
2002; Tilson et al., 1998). Dopamine and serotonin interact with neu-
roimmune systems in multiple ways. For example, neuroinflammation
is associated with excitotoxicity, dopaminergic cell dysfunction and
death, and altered serotonin metabolism and handling (Capuron et al.,
2012; Dantzer, 2018; Felger et al., 2007; Felger et al., 2013; A.H. Miller
et al., 2009; Qin et al., 2007; Robson et al., 2017). Conversely, dopa-
mine, has anti-inflammatory effects (Sarkar et al., 2010; Shao et al.,
2013; Yan et al., 2015) while serotonin has been shown to both inhibit
and potentiate neuroimmune cell function (Glebov et al., 2015; Ledo
et al., 2016).

Neuroimmune systems are especially important during develop-
ment, influencing sexual differentiation of the hypothalamus perina-
tally, glutamatergic synapses in the prefrontal cortex during adoles-
cence, and dopaminergic synapses in the nucleus accumbens during
adolescence (Kopec et al., 2018; Lenz et al., 2013; Mallya et al., 2018;
Nissen, 2017; Schafer et al., 2012). Thus, disruption of neuroimmune
function during development has been proposed as a factor prevalence
of autism spectrum disorder, depression, schizophrenia, neurocognitive
deficits, substance abuse, and later neurodegeneration in humans
(Brenhouse and Schwarz, 2016; Greene et al., 2019; Hanamsagar et al.,
2017; Hoops and Flores, 2017; Marín, 2016). Adolescence is also con-
current with the pubertal increase in gonadal hormones, thus making it
a period of great interest (Brenhouse and Schwarz, 2016; Walker et al.,
2017).

For all the above reasons, in this study we tested the hypothesis that
developmental exposure to PCBs would alter basal and stimulated
neuroimmune function and dopaminergic, serotonergic, and gonadal
hormone signaling during adolescence in sex-specific ways.

2. Materials and methods

2.1. Experimental design

Pregnant Sprague Dawley rats were treated with either an oil con-
trol or PCB mixture throughout their pregnancy until parturition. In
adolescence, one male and one female from each litter were injected
with either saline or lipopolysaccharide (LPS) to provide an in-
flammatory challenge prior to euthanasia and tissue collection. Thus,
this study uses a two (oil or PCB perinatal exposure) by two (sal or LPS
adolescent challenge) design within each sex (Fig. 1).

2.2. Animals and husbandry

All animal protocols were approved by The University of Texas at
Austin's Institutional Animal Care and Use Committee and done in ac-
cordance with the Guide for the Care and Use of Laboratory Animals
and the ARRIVE guidelines (Kilkenny et al., 2010). Sprague Dawley rats

were purchased from Harlan Laboratories (Houston, Texas) and were
housed in a temperature-controlled room (21–23 °C) with a 12 h light/
dark cycle with lights off at 2:00 pm. Rats were housed (2–3 animals per
cage) in polycarbonate cages (43 × 21 × 25 cm) with aspen bedding
(PJ Murphy Forest Products, Sani-Chip). Cages were changed weekly
and were provided with a 5–10 cm long section of PVC pipe for habitat
enrichment. Animals received a low phytoestrogen, fishmeal-free
Global Diet (Harlan-Teklad 2019, Indianapolis, Indiana) and water
from glass bottles and metal sippers ad libitum. Rats were acclimated to
the laboratory through daily handling for at least two weeks prior to
mating.

Virgin females (3–4 months old) were paired overnight with un-
treated male rats (~6 months old). Each male sired one litter that was
treated with the oil vehicle and one with PCBs. Successful mating was
determined via a sperm-positive vaginal smear, after which dams were
singly housed, randomly assigned to treatment group in a counter-
balanced design, and began receiving oil (n = 12) or PCB (n = 12)
treatment as described below. Dams were provided nesting materials
several days before the expected day of birth, postnatal day (P) 0, and
oil/PCB treatment stopped the morning pups were observed. On P1,
pups were weighed and individually identified with a black Sharpie
brand permanent marker. In each litter, up to four pups were randomly
assigned to provide P1 tissue in a companion study (Bell et al., 2018); if
necessary, other randomly chosen pups were then culled such that lit-
ters had 6–8 pups with equal sex ratios beginning on P1.

From P7 on, pups were weighed, relabeled for identification, and
handled (> 5 min) weekly. On P21, pups were weaned and housed with
same-sex littermates (2–3 animals per cage). Animals were monitored
daily for age at eye opening and puberty onset (vaginal opening or
preputial separation). On P40–42, up to four randomly assigned pups
per litter (one male and one female each exposed to saline or LPS) were
used for adolescent tissue. The remaining offspring were monitored for
body weight until adulthood for use in an ongoing study. Twenty-four
total litters were split across three cohorts, separated by 1–8 months,
and PCB treatment was evenly represented across the cohorts. Cohort
did not affect expression of genes significantly altered by PCBs or LPS
when tested as a fixed variable or covariate. The experimenters were
blind to treatment throughout the duration of the experiment.

2.3. Treatments

A 1:1:1 ratio of Aroclor 1242, 1248, and 1254 was used as described
in Bell et al., 2018. This mixture is predominately composed of non-
coplanar congeners with 2–6 chlorine substitutions and was chosen to
mimic the broad range of congeners present in the environment (Frame
et al., 1996; Hites et al., 2004; Kostyniak et al., 2005). Aroclors were
purchased from AccuStandard (New Haven, Connecticut) with the fol-
lowing identification numbers: C-242-N-50MG, Lot# 01141, CAS#
53469-21-9; C-248 N-50MG, Lot# F-110, CAS# 12672-29-6; C-254 N-
50MG, Lot# 5428, CAS# 11097-69-1. PCBs were handled with neces-
sary personal protective equipment in a chemical fume hood, and
chemical and animal waste was disposed of with the Environmental
Health and Safety office on campus.

The PCB mixture or Crisco vegetable oil vehicle was fed to the dams
to mimic naturalistic exposure routes by applying approximately 100 ul
of oil or PCB to a quarter of a palatable wafer (Nilla Wafer, Nabisco,
~0.9 g), with the volume adjusted such that dams were exposed daily
to 20 μg/kg body weight. This dose was chosen to provide an exposure
similar to that of infants in heavily exposed human populations. This
was estimated using a) measures of PCBs in human breast milk, adipose
tissue, and maternal to infant transmission (DeKoning and Karmaus,
2000; Dewailly et al., 1999; Grandjean et al., 1995; Lanting et al., 1998;
Stellman et al., 1998) and b) relationships between exposure dose and
resulting body burden in rats, both in adult males and in maternal
transmittance to offspring (Hany et al., 1999; Kodavanti et al., 1998).
Dams were fed the treated wafers every weekday morning beginning on
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the day that a sperm-positive vaginal smear was detected, until the day
of parturition, in the second half of their light phase. Animals were
habituated to taking the wafer in advanced and were watched to con-
firm that the entire wafer was consumed. While the dams were only
treated with PCBs while pregnant, pups were exposed via placental and
lactational transfer until weaning (Takagi et al., 1986; Takagi et al.,
1976).

LPS was used to stimulate a temporary and non-infectious in-
flammatory reaction (E. coli 0111:B4, Sigma, L4391, Lot 014M4019V).
Between P40–42, animals were injected with LPS (50 μg/kg, ip) or
sterile saline vehicle and immediately returned to their home cage.
They were scored for sickness behaviors (piloerection, lethargy, and
ptosis) on a 0–3 scale as in (Kentner et al., 2006) two hours after in-
jection and sickness behaviors were summed for analysis (max of 9).

2.4. Tissue collection

Animals were euthanized on P40–42, 2.5 h after the LPS injection,
in the first half of their dark phase. This chronological age was chosen
to be mid-adolescent, a time when hormone- dependent and in-
dependent maturational processes occur in the brain. Males and females
are at slightly different developmental phases at this age: females have
completed vaginal opening whereas males have not yet completed
preputial separation. Animals were kept in their home cage until just
prior to rapid decapitation in an adjacent room. Brains were quickly
removed from the skull, chilled on ice, and sectioned coronally using a
rat brain matrix into 1 or 2 mm sections. From these sections, prefrontal
cortex, striatum, hypothalamus, and midbrain were dissected out with
razor blades and transferred into individual RNase-free microcentrifuge
tubes, quickly frozen on dry ice, and stored at −80 °C. Trunk blood
samples were collected and allowed to clot for 30 min before cen-
trifugation (1500 ×g for 5 min). Sera were collected and stored at
−80 °C until use. Adrenals and gonads were also dissected out and
weighed to indicate gross organ function. Females were of different
stages of their estrous cycles at time of tissue collection, according to
postmortem vaginal cytology: proestrus (10–20%), estrus (10–30%), or
diestrus (50–60%). These stages were equally represented across oil/
PCB and sal/LPS groups.

2.5. RNA isolation and gene expression quantification

RNA from the hypothalamus, prefrontal cortex, and striatum were
extracted as previously described (Bell et al., 2018) with Qiagen mini
RNeasy or Invitrogen Purelink kit protocols and treated with associated
DNase while on the column, per manufacturer's directions. RNA was
extracted from midbrain samples using TRIzol™ (Cat # 15596026) ac-
cording to manufacturer's directions and treated with TURBO™ DNase
upon isolation (Cat # AM2238). The RNA yield was determined using a
NanoDrop™ Spectrophotometer, and RNA quality was assessed by
randomly selecting approximately 10% of the samples to run on a

Bioanalyzer 2100 (Agilent Technologies); all tested samples had RNA
integrity numbers of 9 and above. Isolated RNA samples (200 ng) were
reverse transcribed to cDNA using a high capacity cDNA reverse tran-
scriptase kit with RNase inhibitor (Cat # 4374967), according to
manufacturer's protocol. Negative controls that did not receive reverse
transcriptase during the cDNA conversion did not amplify during qPCR.

We initially focused on the hypothalamus because it is a hormone
sensitive region that has an intrinsic dopaminergic cell population and
is essential in regulating pyrogenic responses to pathogens. Here, 48
genes were selected for initial analysis, including those related to
neuroimmune, hormone, and neuromodulator signaling (Table 1).
Custom designed microfluidic Taqman Low Density Array (TLDA) cards
(Applied Biosystems, Cat No 4342253) were used with Taqman Gene
Expression Mastermix (Applied Biosystems, Cat No 4369016) according
to manufacturer's directions; procedures were completed in consulta-
tion with the MIQE guidelines (Bustin et al., 2009) and gene assay
details are included in (Bell et al., 2018). The samples were run at 50 °C
for 2 min, 95 °C for 10 min, 45 cycles of 95 °C for 15 s, and 60 °C for
1 min using a ViiA 7 qPCR system (Applied Biosystems), which auto-
matically determined the quantification cycle (Cq) of each sample.
Gapdh, Rpl3a, and 18s were included and their geometric mean was
used to normalize sample Cq values to calculate the relative expression
of target genes to same sex oil- and saline-control groups, as in (Bell
et al., 2018). Four of 70 samples, each from different groups, were
identified by a Grubbs test as within-group outliers in more than four
genes; they were removed from analysis for all 48 genes.

When indicated by hypothalamic results and preliminary data from
unpublished studies, additional targets were quantified and run in-
dependently in the prefrontal cortex (Ikbkb, Nfkb1, Rela, Tlr4, Drd1,
Drd2), striatum (Drd1, Drd2, Tlr4), and midbrain (Drd1, Drd2, Th, Tlr4)
to determine region-specific effects. Taqman Gene Expression
Mastermix (Part No 4369016) and similar parameters were used on a
QuantStudio 6 qPCR system and Gapdh was used to normalize sample
Cq. One sample was an outlier in all of the prefrontal cortex analysis
and so was removed.

2.6. Serum corticosterone quantification

Total serum corticosterone was determined via a radioimmunoassay
(ImmuChem Double Antibody 125I RIA Kit, MP Biomedicals LLC,
Orangeburg NY). Samples were run across two assays in duplicate,
according to manufacturer directions. Intra-assay CV was 1.99% and
inter-assay CV of standards was 11.65%; minimum level of detection
was 7.7 ng/ml. Two outliers from two different groups were identified
via Grubb's test and so were removed.

2.7. Serum cytokine quantification

Serum samples were thawed on ice and diluted in assay buffer. The
Milliplex Cytokine/Chemokine Hormone assay (RECYTMAG-65K, Cat

Mate

Day: E0

Dam Oil / PCB exposure

E1 – E22/23 P0

Birth

P1 P90P40-42

Oil: 12 Dams receive vegetable oil vehicle

PCB: 12 Dams receive A1242/A1248/A1254 mixture

Bell et al., 2018 Ongoing Work

Female Male

Sal
LPS

Female Male
Sal
LPS

Sal
LPS

Sal
LPS

Fig. 1. Experimental timeline. Pregnant dams were orally
exposed to PCBs or oil control, throughout gestation (em-
bryonic day E1 – E22/23). The day after birth (P1), up to four
pups per litter were used for a previous study (Bell et al.,
2018), and then the litter was culled to four male and four
female pups. Per litter, two males and two females were
randomly assigned for use during adolescence (current study)
or during adulthood (in a companion study, data not shown).
Between P40–42, one male and one female were randomly
assigned to receive an immune challenge (lipopoly-
saccharide, LPS, 50 μg/kg, i.p.) or saline vehicle control 2.5 h
prior to tissue collection.
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No) was run according to manufacturer directions. This assay contains
interleukin (IL)- 1a, 1b, 4, 6, 10, interferon gamma (IFNγ), and tumor
necrosis factor (TNF, also known as TNFα), which were selected based
on literature and availability in the assay. Samples (25 μl) were run in
duplicate across two plates and experimental groups were represented
evenly between plates. Fewer than 30% of the samples within each
group were above limits of detection for IFNγ and IL4 and were not
analyzed further. Variability (%CV) of sample replicates within an
assay and quality control values between assays were as follows, re-
spectively: IL1a (15%, 19%), IL1b (13%, 18%), IL6 (12%, 3%), IL10
(11%, 11%), and TNF (10%, 7%). Three animals were removed from all
assays because their replicate % CV values were unusually high. Limits
of detection for IL1a, IL1b, IL6, IL10, and TNF were 45, 10.79, 235,
4.18, and 5.29 ng/ul, respectively.

2.8. Analysis and statistics

Effects and interactions between PCB exposure and LPS challenge
(2 × 2 design) were determined within males and females in-
dependently because of known sex differences in neuroimmune out-
comes. Each PCB or oil exposed litter provided no more than one an-
imal per male/female, sal/LPS group, and individual animal was the
unit of analysis. Number of adolescent pups collected per group were as
follows: female oil-sal (n = 9); female oil-LPS (n = 9); female PCB-sal
(n = 9); female PCB-LPS (n = 8); male oil-sal (n = 8); male oil-LPS
(n = 9); male PCB-sal (n = 9); male PCB-LPS (n = 9). Grubbs tests
were used to identify outliers within each group (described above) prior
to analysis using SPSS and GraphPad Prism, with final ns and significant
differences shown in figures and tables as *, p < 0.05 and **,
p < 0.01.

Body weight was analyzed with a repeated measures analysis of
variance tests (ANOVA), with age as a within-subject variable and PCB

Table 1
Summary of effects of PCB exposure and/or LPS challenge on adolescent hypothalamic gene expression. Significant effects (*p < 0.05; **p < 0.01) are noted
within each sex.

Gene Effect of Females Males

PCB LPS PCB LPS

Xenobiotic signaling
AhR Aryl hydrocarbon receptor
Arnt Aryl hydrocarbon receptor nuclear translocator

Neuroimmune signaling
Ccl22 Chemokine (CeC motif) ligand 22 Sal < LPS** Sal < LPS**
Cxcl9 Chemokine (C-X-C motif) ligand 9 Sal < LPS** Sal < LPS**
Cybb Cytochrome b-245, beta polypeptide
Ifna1 Interferon-alpha 1
Ikbkb Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta Oil < PCB*
Il1a Interleukin 1 alpha Sal > LPS** Sal > LPS**
Il1b Interleukin 1 beta Sal < LPS** Sal < LPS**
Il7r Interleukin 7 receptor Sal < LPS* Sal < LPS*
Itgam Integrin, alpha M Oil < PCB*
Itgb2 Integrin, beta 2
Myd88 Myeloid differentiation primary response gene 88 Sal < LPS**
Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 Sal < LPS* Oil < PCB* Sal < LPS*
Ptgs2 Prostaglandin-endoperoxide synthase 2 Sal < LPS** Sal < LPS**
Ptges Prostaglandin E synthase Sal < LPS** Sal < LPS**
Rela v-rel reticuloendotheliosis viral oncogene homolog A (avian) Oil < PCB* Sal < LPS**
Tlr4 Toll-like receptor 4
Tnf Tumor necrosis factor Sal < LPS**

Neuroimmune modulators
Arrb1 Arrestin, beta 1
Map3k7 Mitogen activated protein kinase kinase kinase 7
Tgfb2 Transforming growth factor, beta 2 Oil < PCB*

Hormones, enzymes, and receptors
Ar Androgen receptor
Crh Corticotropin releasing hormone
Cyp19a1 Cytochrome P450, family 19, subfamily a, polypeptide 1 (aromatase)
Esr1 Estrogen receptor 1
Esr2 Estrogen receptor 2 Oil < PCB** Sal < LPS*

Opioid precursors and receptors
Oprk1 Opioid receptor, kappa 1 Sal < LPS*
Oprm1 Opioid receptor, mu 1 Sal < LPS*
Pdyn Prodynorphin
Pomc Proopiomelanocortin

Dopamine enzymes, receptors, and transporters
Drd1a Dopamine receptor D1A Oil < PCB**
Drd2 Dopamine receptor D2 Oil < PCB**
Th Tyrosine hydroxylase
Slc6a3 Solute carrier family 6, member 3 (dopamine transporter)

Serotonin enzymes, receptors, and transporters
Htr1a 5-Hydroxytryptamine receptor 1A
Htr2a 5-Hydroxytryptamine receptor 2A Oil < PCB**
Tph1 Tryptophan hydroxylase 1
Slc6a4 Solute carrier, family 6, member 4 (serotonin transporter)
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treatment as the between-subject variable; follow-up t-tests were per-
formed within an age. Age at eye opening, vaginal opening, and pre-
putial separation were analyzed with t-tests to determine effects of PCB
exposure prior to any LPS challenge. Relative expression of genes and
concentrations of serum corticosterone were analyzed using two-way
ANOVA to determine main effects of PCB exposure and LPS challenge,
and any interactions between these two variables. Any significant in-
teraction effects were followed-up by independent t-tests: effects of PCB
within saline-control and LPS-challenged groups, and effects of LPS
within oil-control and PCB-treated groups, were determined within
each sex. Any groups that failed to meet parametric assumptions by
failing Levene's test were analyzed using a Mann-Whitney U test (MW),
including Ptgs2, Crh, Cybb, and Ptges for both sexes, Tnf and Map3k7 in
females, and Arrb1, Ar, and Htr1a in males. Serum cytokine values also
did not meet parametric assumptions and were analyzed with a Mann-
Whitney U test.

For six genes (Il1b, Slc6a4, Ifna1, Tph1, Ccl22, and Cxcl9), at least
one group had fewer than 30% of its samples fail to amplify (defined as
Cq > 35) or reach detectable levels. As such, differences in the percent
of samples that amplified within a group were identified with a χ2

goodness of fit test. Effects of PCB within saline-control and LPS-chal-
lenged groups, and effects of LPS within oil-control and PCB-treated
groups, were determined within each sex to identify effects that are
analogous to main effects of each treatment, or an interaction when the
effect of one variable depended on the level of the other. Cqs for
Cyp1a1, Ido1, Il4, Il6, and O3far1 were all either above 35 or un-
determined and could not be analyzed further.

3. Results

3.1. Physiological development

When analyzed with age as a repeated measure, PCB exposure was
associated with greater body weight in males (F(1,33) = 4.27,
p < 0.05), independent of PCB exposure x age interactions. However,
when follow-up t-tests were performed at each age, significant effects
were only present from P28–35 in males, who were 5–10% heavier
when PCB-exposed throughout this period (Fig. 2).

PCBs also advanced the age at eye opening by approximately half a
day, in both females (MW, p < 0.01, age at eye opening for oil:
15.31 days, PCB: 14.94) and males (F(68) = 8.83, p < 0.01, oil: 15.47,

PCB: 14.97). This effect was no longer significant when the age at eye
opening was normalized to body weight at P14. No significant effects of
PCBs on age at pubertal onset, adrenal or gonad weight (relative to
body weight), and sickness behavior responses to LPS were observed.
As expected, summed sickness behavior was increased by LPS challenge
in both females (MW, p < 0.01, from 0.22 to 1.76) and males (MW,
p < 0.01, from 0.06 to 2.55), but this was not significantly altered by
PCB exposure.

3.2. Gene expression in the hypothalamus

The effects of PCB exposure and LPS challenge on relative expres-
sion of 48 genes were analyzed in the hypothalamus (Table 1).

In the hypothalamus, all effects of PCBs were sex-specific and in-
dependent of LPS exposure. Animals exposed to PCBs had greater ex-
pression of five immune-signaling genes compared to those exposed to
oil (Fig. 3A-E). These genes included Ikbkb (F(1,29) = 5.23, p < 0.05)
in females and Rela (F(1,29) = 4.37, p < 0.05), Nfkb1 (F(1,29) = 4.35,
p < 0.05), Itgam (F(1,29) = 4.24, p < 0.05), and Tgfb2 (F(1,29) = 5.66,
p < 0.05) in males. In both sexes, exposure to PCBs had no effect on
the relative expression of Tlr4 in the hypothalamus (Fig. 3F). In-
dependent of PCB exposure, LPS increased expression of Nfkb1
(F(1,30) = 5.08, p < 0.05) in females (Fig. 3B), and of Nfkb1
(F(1,30) = 5.09, p < 0.05) and Rela (F(1,30) = 8.28, p < 0.01) in males
(Fig. 3B-C).

PCB exposure also altered neuromodulating endpoints in the hy-
pothalamus. Males exposed to PCBs had greater expression of four re-
ceptors (Fig. 4A-D): Esr2 (F(1,29) = 14.28, p < 0.01), Htr2a
(F(1,29) = 8.03, p < 0.01), Drd1a (F(1,29) = 9.82, p < 0.01) and Drd2
(F(1,29) = 8.80, p < 0.01) but PCBs did not alter the relative expres-
sion of the rate limiting enzyme in catecholamine production, Th
(Fig. 4E). Males challenged with LPS also had increased expression of
Esr2 (F(1,30) = 5.72, p < 0.05, Fig. 4A).

LPS also altered hypothalamic expression of several genes related to
inflammation, independent of PCB exposure. Data are shown collapsed
across oil and PCB groups (Table 2). In both males and females, those
challenged with LPS had lower expression of Il1a and greater expression
of Il7r, Nfkb1, Ptgs2, and Ptges than saline exposed animals. In addition,
LPS-challenged females had greater relative expression of Oprk1 than
saline controls. LPS-challenged males had greater relative expression of
Esr2, Myd88, Oprm1, Rela and Tnf than saline controls. LPS also altered
the proportion of samples that were reliably quantified via qPCR
(Cq < 35), as determined by χ2 analysis: LPS exposure increased
amplification of Ccl22, Cxcl9, and Il1b in both males and females.

3.3. Gene expression in the mesocorticolimbic regions

To follow up on effects of PCBs in the hypothalamus, genes asso-
ciated with the NF-κB complex were analyzed in the prefrontal cortex,
and Tlr4 and dopaminergic genes were analyzed throughout the me-
socorticolimbic region (Table 3).

Three of the four neuroimmune signaling genes in the prefrontal
cortex showed significant interaction effects of PCBs and LPS in males
but not in females (Fig. 5): Ikbkb (F(1,25) = 5.88, p < 0.05), Tlr4
(F(1,26) = 5.33, p < 0.05), and Rela (F(1,29) = 5.73, p < 0.05). More
specifically, oil-exposed animals showed no response to LPS, but males
exposed to PCBs showed a decrease in expression of Ikbkb
(F(1,13) = 4.73, p < 0.05) and Tlr4 (F(1,13) = 7.89, p < 0.05) in
response to LPS. A main effect of LPS on Rela expression was observed
(F(1,29) = 7.85, p < 0.05), however this was likely driven by increased
Rela expression in response to LPS in oil-exposed animals
(F(1,14) = 13.80, p < 0.01), but not in PCB-exposed animals; in ad-
dition, males exposed to PCBs had greater expression of Rela, but only
in those not exposed to LPS (F(1,14) = 4.79, p < 0.05). Exposure to
PCBs and/or LPS did not significantly affect the relative expression of
Nfkb1 in the prefrontal cortex in either sexes (Table 3; Fig. 5C).

Fig. 2. Male animals exposed to PCBs had significantly greater body weights.
This effect was present from P28–35. Data are presented as mean body weight
values± SEM across time, and data for P28 are shown in the top left inset. Final
n per group are shown within insert bar graph and represent final group counts
for all days analyzed. Significant effects (p < 0.05) are noted (*).
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In contrast to the hypothalamus, expression of dopaminergic sig-
naling genes Drd1a, Drd2, and Th in mesocorticolimbic system was not
altered by PCB exposure or the LPS challenge (Table 3).

3.4. Serum corticosterone

No main effects of PCBs or interactions between PCBs and LPS on
serum corticosterone concentrations were found (Fig. 6). Animals ex-
posed to LPS had higher concentrations of corticosterone than those
exposed to saline, in females (F(1,33) = 113.31, p < 0.01) and in males
(F(1,35) = 53.99, p < 0.01).

3.5. Serum cytokines

LPS challenge was associated with higher concentrations of serum
IL1b (MW, p < 0.01) and IL10 (MW, p < 0.01) in both males and
females (Fig. 7A-B). The effect of LPS on IL10 was independent of PCB
exposure, whereas the effect of LPS on IL1b concentration was present
only in oil controls (MW, p < 0.01). PCB exposure was also associated
with lower concentrations of IL1b in LPS challenged females (MW,
p < 0.05). In both males and females, LPS challenge was associated
with a greater number of samples with detectable concentrations of IL6
and TNF, independent of PCB exposure (χ2, p < 0.01, Fig. 7C-D). No
effects of PCB exposure or LPS challenge were found on concentrations
of IL1a (data not shown).

4. Discussion

As a whole, our results show significant effects of perinatal PCB
exposure on neuroimmune and dopaminergic measures in adolescent
rats. A major finding was the extent of differences between the sexes: in

the hypothalamus, extensive gene expression profiling showed that
while both sexes responded to LPS, only males showed effects of PCBs,
with the exception of Ikbkb. Further work done in the prefrontal cortex,
midbrain, and striatum revealed region-specificity, with effects of PCBs
in the mesocorticolimbic region limited to neuroimmune signaling
genes in the male prefrontal cortex. LPS also affected peripheral serum
cytokines in both sexes, with an effect of PCBs found only in females for
IL1b; however, given the variability and the relatively low sample size,
these data need to be interpreted with caution. These findings suggest
that while prior PCB exposure does not cause wholesale changes to the
neuroimmune system, it affects specific aspects, in a sex-specific and
brain region-specific manner. These alterations could shift the devel-
opmental trajectory of the brain, potentially altering risk for mental
health and substance abuse disorders that are regulated by neu-
roimmune signaling.

Sex-specific or sexually differentiated effects of environmental
contaminants on neural outcomes are common, as described in reviews
of endocrine disrupting compounds (EDCs) (Gore et al., 2019; Rebuli
and Patisaul, 2016) and other studies in this special issue; indeed, sex
differences in responses are present in a range of species, from zebrafish
(Wang et al., 2015) to humans (Braun et al., 2017). However, there are
several salient themes to highlight. 1) Sex-specific effects of PCBs have
been detected not only in vivo, but also in the dendritic arborization
and axon growth in neurons grown and treated in vitro (Keil et al.,
2018; Sethi et al., 2018). 2) While the majority of basic PCB studies that
include and analyze both males and females use a developmental ex-
posure model (likely because both sexes are present in resulting litter),
sex differences in neural, endocrine, and behavioral outcomes are also
found in response to juvenile and adult exposures (Bell et al., 2016a;
Bell et al., 2016b; Jackson et al., 2019; Viluksela et al., 2014). 3) Sex-
specific effects extend beyond the usual EDC suspects, including lead

Fig. 3. Animals exposed to PCBs had greater expression of immune-related genes in the hypothalamus. In response to PCB exposure, females had greater expression
of Ikbkb (A) and males had greater expression of Rela (B), Nfkb1 (C), Itgam (D), and Tgfb2 (E). In both sexes, PCB exposure did not affect the relative expression of Tlr4.
LPS also increased expression of Nfkb1 (B) and Rela (C) Data are presented as mean values± SEM with final n per group, after removing outliers and samples that
failed to amplify, shown within bars. Significant effects (*p < 0.05) are noted within sex.
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and methylmercury (Kasten-Jolly and Lawrence, 2017; Ruszkiewicz
et al., 2016). As brain maturation is sex-differentiated due to differences
in hormone production or sensitivity, one obvious mechanism behind
these sex-specific effects is that EDCs alter hormone signaling and dis-
rupt these developmental processes. However, it is also possible that
pre-existing differences in male and female neural, endocrine, or im-
mune systems could make them differentially responsive to non-hor-
monal mechanisms of toxicity. Finally, sexes may also differ in their
body burdens, as is sometimes found in wildlife (Hitchcock et al., 2019;
Keogh et al., 2020) and humans (Yang et al., 2018). All possibilities
emphasize the need for including both sexes in analysis and considering

sex as a biological variable.

4.1. Perinatal PCB exposure is associated with greater expression of
neuroimmune factors in the adolescent male hypothalamus

While PCBs are known to acutely alter activity of the NF-κB complex
in a range of peripheral cells (Abliz et al., 2016; Gourronc et al., 2018;
Hennig et al., 2002; Kwon et al., 2002; Phillips et al., 2018; Waugh
et al., 2018), this is the first study to demonstrate that the NF-κB
complex appears particularly sensitive to long-term effects of develop-
mental PCB exposure in the brain. Specifically, in the male

Fig. 4. Males exposed to PCBs had greater expression of neuromodulator receptors in the hypothalamus. In response to PCB exposure, males had greater expression of
Esr2 (A), Htr2a (B), Drdla (C), and Drd2 (D). In both sexes, PCB exposure did not change the relative expression of Th. Data are presented as mean values± SEM with
final n per group, after removing outliers and samples that failed to amplify, shown within bars. Significant effects (**p < 0.01) are noted within sex.

Table 2
LPS challenge altered expression of immune and neuromodulator receptor expression in the hypothalamus, independent of PCB exposure. Data are shown as relative
expression (mean ± SEM) or the percent of samples that amplified within a group. They were analyzed via a two-way ANOVA or Mann-Whitney test, or a χ2 test,
respectively. Statistics indicate effects of LPS, *p < 0.05 or **p < 0.01 within sex.

Gene Females Males

Sal LPS Statistics Sal LPS Statistics

Ccl22 0% 81.25% ** χ2 (1) = 22.79 0% 87.50% ** χ2 (1) = 25.84
Cxcl9 5.88% 93.75% ** χ2 (1) = 25.48 5.88% 93.75% ** χ2 (1) = 25.48
Esr2 0.96 ± 0.05 1.05 ± 0.05 ns, F(1,29) = 1.43 1.14 ± 0.06 1.32 ± 0.06 * F(1,29) = 6.68
Il1a 0.84 ± 0.06 0.54 ± 0.04 ** F(1,29) = 15.62 0.93 ± 0.06 0.65 ± 0.05 ** F(1,28) = 12.00
Il1b 11.76% 81.25% ** χ2 (1) = 16.05 11.76% 93.75% ** χ2 (1) = 22.18
Il7r 1.05 ± 0.09 1.37 ± 0.09 * F(1,29) = 6.76 0.97 ± 0.07 1.22 ± 0.07 * F(1,29) = 6.65
Myd88 1.05 ± 0.07 1.20 ± 0.06 ns, F(1,29) = 2.90 1.04 ± 0.05 1.23 ± 0.05 ** F(1,29) = 8.16
Nfkb1 0.97 ± 0.05 1.18 ± 0.08 * F(1,29) = 4.49 1.11 ± 0.05 1.33 ± 0.08 * F(1,29) = 5.41
Oprk1 0.97 ± 0.06 1.3 ± 0.1 * F(1,29) = 5.31 1.04 ± 0.05 1.17 ± 0.06 ns, F(1,29) = 2.42
Oprm1 1.05 ± 0.06 1.14 ± 0.05 ns, F(1,29) = 1.36 0.97 ± 0.04 1.09 ± 0.04 * F(1,29) = 4.36
Ptgs2 1.2 ± 0.1 3.7 ± 0.4 ** MW 1.04 ± 0.06 3.9 ± 0.4 ** MW
Ptges 1.0 ± 0.1 7.1 ± 0.8 ** MW 1.3 ± 0.1 10 ± 1 ** MW
Rela 1.14 ± 0.09 1.22 ± 0.07 F(1,29) = 0.58 1.12 ± 0.06 1.37 ± 0.07 ** F(1,29) = 7.74
Tnf 1.0 ± 0.1 1.8 ± 0.2 ns, MW 1.4 ± 0.2 2.6 ± 0.3 ** F(1,29) = 8.54
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hypothalamus, PCB exposure increased gene expression of Nfkb1 and
Rela. These genes code for the p50 and p65 subunits of the NF-κB
transcription factor, respectively, that drives production of cytokines
and other proinflammatory proteins, including itself (Karin, 2011). This
PCB-induced increase in Nfkb1 and Rela expression is additive with an
LPS-induced increase; therefore, PCBs can enhance proinflammatory
signaling at both basal and immune-activated states in the hypotha-
lamus. The only gene that was affected by PCBs in females was in this
complex—Ikbkb, the protein product of which phosphorylates IκB for
degradation and frees the NF-κB complex to translocate to nucleus. We

previously reported this same effect of PCBs in P1 female but not male
hypothalamus (Bell et al., 2018). Thus, both males and females show a
generally proinflammatory response to PCBs, independent of LPS acti-
vation, but via different gene targets.

Overall, adolescent males appear to be substantially more re-
sponsive to effects of PCBs on neuroimmune signaling than females. In
males, PCB exposure increased expression of Itgam, which codes for the
integrin subunit CD11b and is important in reactive oxygen species
production and phagocytosis in microglia, the resident immune cells of
the brain (Brown and Neher, 2014; Linnartz and Neumann, 2013;

Table 3
Summary of effects of PCB exposure and/or LPS challenge on adolescent mesocorticolimbic gene expression. Significant effects (*p < 0.05) were observed only in
the prefrontal cortex, and only in males.

Brain region Gene Effect of Females Males

PCB LPS PCB LPSs

Prefrontal cortex
Neuroimmune signaling Ikbkb Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta LPS X PCB*

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
Rela v-rel reticuloendotheliosis viral oncogene homolog A (avian) Sal < LPS*, LPS X PCB*
Tlr4 Toll-like receptor 4 LPS X PCB*

Dopamine receptors Drd1a Dopamine receptor D1A
Drd2 Dopamine receptor D2

Striatum: no significant effets of PCB exposure or LPS challenge on Tlr4, Drdd1a, or Drd2

Midbrain: no significant effets of PCB exposure or LPS challenge on Tlr4, Drdd1a, Drd2, or Th

Fig. 5. PCB exposure altered responses to LPS in male prefrontal cortex. In response to PCB and LPS exposure, males showed a change in relative expression of Ikbkb
(A), Rela (C), and Tlr4 (D) but not Nfkb1 (B). Data are presented as mean values± SEM with final n per group, after removing outliers and samples that failed to
amplify, shown within bars. Significant effects (*p < 0.05) are noted within sex.
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Schafer et al., 2012). PCB exposure, independent of LPS challenge, also
increased Tgfb2 expression in the male hypothalamus. TGFβ2 is a
pleiotropic growth factor and cytokine that is generally anti-in-
flammatory in adulthood and regulates development (Bottner et al.,
2000; Flanders et al., 1998; Sanyal et al., 2004). TGFβ1 appears to
provide some auto-regulation of microglial activation (Dobolyi et al.,
2012), and perhaps TGFβ2 is playing a similar role in the current study.

While the NF-κB subunits studied herein are expressed in neurons, as-
trocytes, and microglia (Dresselhaus and Meffert, 2019; Kawai and
Akira, 2007), together, these findings raise microglia as a novel target
of potential PCB action. Moreover, male microglia are more prevalent
during neonatal development (Lenz and McCarthy, 2015; Schwarz
et al., 2012), contain more active NF-κB (Guneykaya et al., 2018; Villa
et al., 2019; Villa et al., 2018), and are more vulnerable to immune or
toxin challenge (Hanamsagar et al., 2017; Rebuli et al., 2016; Villa
et al., 2018), than female microglia. Indeed, in the current study,
adolescent males showed a broader response to LPS exposure, including
an increase in the expression of Tnf, a cytokine predominately, but not
exclusively, produced by microglia (Bennett et al., 2016; Chung and
Benveniste, 1990; Welser-Alves and Milner, 2013; Zhang et al., 2014).
This Tnf effect was also present in neonatal males, but not females (Bell
et al., 2018). Thus, effects of PCBs on microglia could explain why al-
most all of the effects of PCBs are observed only in males in this study.
Differences in microglial activity between sexes could also induce sex
differences in neurons and immuno-competent astrocytes (Dong and
Benveniste, 2001; Kopec et al., 2018; Mallya et al., 2018; Nelson and
Lenz, 2017a; Siracusa et al., 2019; VanRyzin et al., 2019).

The mechanisms by which PCBs could exert these effects are nu-
merous and not mutually exclusive. Dioxin-like PCBs can bind aryl
hydrocarbon receptors to increase oxidative stress and induce NF-κB
activity and cytokine production (Gourronc et al., 2018; Hennig et al.,
2002), while non-dioxin-like congeners may do so by activating NAD(P)
H oxidase or by directly damaging DNA (Abliz et al., 2016; Choi et al.,
2003; Choi et al., 2010; Kwon et al., 2002; Lu et al., 2004; Marabini
et al., 2011; Phillips et al., 2018; Sipka et al., 2008). In addition,

Fig. 6. LPS increased concentrations of serum corticosterone in both males and
females, independent of PCB exposure. Data are presented as mean
values± SEM with final n per group, after outlier removal, shown within bars.
Significant effects (**p < 0.01) are noted within sex.

Fig. 7. LPS challenge increased concentrations of serum cytokines, IL1b (A), IL10 (B), IL6 (C), and TNF (D), in both males and females independent of PCB exposure.
In females exposed to PCBs, the increase in IL1b is blunted. Each group included 7–9 samples, but many were below detection limits (BDL). Because of this, and the
high variability within groups, data are presented as mean values± SEM, with detectable samples shown as overlaid data points. Significant effects (*p < 0.05) are
noted within sex.
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different PCB congeners can both agonize or antagonize estrogen re-
ceptor activity (Hamers et al., 2011; Pliskova et al., 2005; Warner et al.,
2012), which is known to modulate both aryl hydrocarbon receptor and
NF-κB activity (Frasor et al., 2015; Maggi et al., 2004). Microglia are
altered depending on circulating estradiol (Lenz et al., 2013; Loram
et al., 2012; Saijo et al., 2011; Sierra et al., 2008; Vegeto et al., 2006;
Vegeto et al., 2001) and their activational patterns are programmed
early in life (Crain et al., 2013; Villa et al., 2018), making estrogenic
mechanisms an interesting possibility. Finally, some PCB congeners are
known to interact with ryanodine receptors and alter thyroid hormone
action (Pessah et al., 2019; Sethi et al., 2019), both of which could
potentially affect neuroimmune processes (Hopp et al., 2015; Klegeris
et al., 2007; Lima et al., 2001; Mancini et al., 2016). However, any
effects observed in the current study are a result of both early life or-
ganizational and adolescent acute effects of a mix of PCB congeners, the
metabolites of which likely shift over time; as such, continued research
is required.

4.2. Perinatal PCB exposure altered responses to immune challenge in the
adolescent male prefrontal cortex, but not striatum or midbrain of either sex

Of the four regions analyzed, the prefrontal cortex was the only one
affected by PCBs and LPS interactions, and again, the effects were
limited to males. Specifically, interactions between PCB exposure and
subsequent LPS challenge decreased or prevented expression of the NF-
κB complex components Rela and Ikbkb, as well as Tlr4, a toll like re-
ceptor expressed by microglia and other cells (Aurelian et al., 2016;
Shen et al., 2016). TLR4 normally binds pathogen associated molecular
patterns (PAMPs) to stimulate an immune reaction upstream of NF-κB
activation, and Tlr4 upregulation occurs concurrent with immune and
microglial activation (Doyle et al., 2017; Hoogland et al., 2015), but see
(Loram et al., 2012). Thus, PCBs appear to be blunting a typical neu-
roimmune response in the prefrontal cortex. These results are in
agreement with other studies showing that mixtures of non-dioxin-like
and ortho-substituted PCBs inhibit LPS-stimulated Tlr4 expression, NF-
κB activity, and cytokine production in primary mouse peritoneal
macrophages (Santoro et al., 2015) and proliferation of primary mouse
splenocytes (Smithwick et al., 2003).

Some remaining questions are why the effects of PCBs are so dif-
ferent between the hypothalamus and prefrontal cortex, and why
striatum and midbrain were unaffected. One possibility could be dif-
ferential sensitivity to oxidative stress, as is found in different popula-
tions of dopaminergic cells (Benskey et al., 2013; Wang and Michaelis,
2010). Another potential reason for regional differences is sensitivity to
hormones, with the hypothalamus expressing significantly more re-
ceptors for estradiol and androgen than mesocorticolimbic regions
(Simerly et al., 1990; Zuloaga et al., 2014). Glia in the hypothalamus
are extremely responsive to estradiol perinatally (Lenz et al., 2013), but
cortical glia may be differentially sensitive during adolescence. PCBs
have also been shown to alter estradiol production and metabolism by
disrupting activity of aromatase and estrone sulfotransferase (Hamers
et al., 2011). As aromatase is known to be locally regulated within brain
regions (Amateau et al., 2004; Konkle and McCarthy, 2011), and males
express more aromatase than females in the hypothalamus (Wu et al.,
2009), this is another possible rationale for region- and sex-specific
effects of PCBs. Microglia also show different phenotypes across brain
regions (Crain and Watters, 2015; De Biase et al., 2017; Pintado et al.,
2011) and so may react differently to these challenges.

4.3. Perinatal PCB exposure up-regulates expression of receptors for
estradiol receptor beta, dopamine, and serotonin in the hypothalamus

In the hypothalamus, expression of Esr2, the gene that codes for
ERβ, is increased by both LPS and PCB exposure in males. However this
effect is most noticeable as a response to LPS in PCB-exposed animals,
in agreement with effects of immune activation to increase Esr2

expression in estradiol-treated microglia and macrophages (Liu et al.,
2005; Villa et al., 2015). Esr2 was affected by PCBs and LPS in neonatal
siblings in a similar pattern, but in females instead of males (Bell et al.,
2018). This emphasizes the dynamic nature of PCB effects across de-
velopment that could be dependent on time since acute PCB exposure,
metabolism of the original congeners, current developmental processes,
and/or circulating gonadal hormones.

PCBs increased baseline Drd1a and Drd2 gene expression in male
hypothalamus, a result consistent with the effect of Aroclor 1221 in
adult male hypothalamus (Bell, 2014), independent of LPS challenge.
We have previously reported that prenatal PCB exposure caused a re-
duction in Th, the gene that codes for the rate limiting enzyme in ca-
techolamine production, and Slc6a3, the gene that codes for the do-
pamine transporter, in neonatal siblings of the animals in this study
(Bell et al., 2018). As such, the greater expression of dopamine re-
ceptors in the adolescent hypothalamus may be compensating for this
reduced dopamine production and content early in life. Serotonin sig-
naling was also altered by PCB exposure, and in a similar pattern de-
velopmentally as with dopamine: Slc6a4, the gene that codes for the
serotonin transporter, was decreased by PCBs in neonates while Htr2a,
a gene that codes for a serotonin receptor, was increased by PCBs in
adolescents. While effects of PCBs on serotonergic endpoints have been
varied, the developing hypothalamus appears to be sensitive (Boix and
Cauli, 2012; Dervola et al., 2015; Elnar et al., 2012; Mariussen and
Fonnum, 2001). Of note is that hypothalamic dopamine and serotonin
both regulate food intake (Legrand et al., 2015; Voigt and Fink, 2015).
As such, these results could be contributing factors to the greater body
weight found in PCB-exposed animals in the current study and is an
area of future interest.

In contrast to effects in the hypothalamus, neither PCBs nor LPS
altered dopaminergic gene expression throughout the mesocortico-
limbic system in the current study. This regional specificity could be
explained by different sensitivities of these dopaminergic populations
to injury (Matzuk and Saper, 1985). While previous work has shown
effects of PCBs on dopamine systems in the frontal cortex, striatum, and
midbrain, these studies differ slightly in their endpoints (dopamine
transporter activity or metabolism, for example) and experimental de-
sign (PCB congeners and dose, age at exposure or tissue collection, and
sexes studied) which could cause these different observations (Caudle
et al., 2006; Choksi et al., 1997; Dervola et al., 2015; Enayah et al.,
2018; Fielding et al., 2013; Lee et al., 2012; Lesmana et al., 2014;
Mariussen et al., 1999; Seegal, 1994; Seegal et al., 2005; Tian et al.,
2011).

4.4. Peripheral LPS altered expression of neuroimmune genes

As a strong activator of the immune system, LPS challenge altered
expression of cytokine- and prostaglandin-related genes in the current
study, thereby validating our experimental design. LPS also increased
some of the same immune signaling genes in this study that were
identified in the neonatal siblings of these animals in a companion
study: Cxcl19, IL1b, Ptgs2, Ptges, and TNFa (Bell et al., 2018). The
current study also identified additional genes affected in adolescent but
not neonatal animals: Ccl22, Il7r, and Myd88. Interestingly, an opioid
receptor response to LPS was reversed over development, as expression
of Oprk1 and Oprm1 was decreased by LPS in neonates but increased by
LPS in adolescents. While it is well established that neonatal immune
function is immature and continues to develop during puberty (Goble
et al., 2011; Holsapple et al., 2004; Van Loveren and Piersma, 2004),
this opposite response to immune challenge is notable and merits fur-
ther study.

The mechanism by which peripheral LPS can alter neuroimmune
signaling is still an area of active study. Intraperitoneal LPS could ac-
tivate neuroimmune cells via vagal nerve activity, transport of proin-
flammatory products like cytokines across the blood brain barrier, or
signaling of epithelial cells intrinsic in the barrier itself (Hoogland
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et al., 2018; Nakano et al., 2015). LPS challenge did increase produc-
tion of IL1b, IL6, IL10, and TNF peripherally which could have all re-
layed that signal to the brain. PCBs are also known to alter blood brain
barrier permeability, perhaps differentially increasing relay of periph-
eral cytokine LPS response as a mechanism of the observed PCB x LPS
interactions on Tlr4 and NF-κB complex genes in the prefrontal cortex
(Choi et al., 2012). In our study, PCB exposure blunted the serum cy-
tokine IL1b response to LPS in females; however, due to the wide spread
data and low sample size, further research is needed to confirm this
effect. While it is likely not a cause for the differential brain responses
to PCBs or LPS, it may indicate that other immune-active peripheral
tissues are being altered by PCBs, and are therefore responding to LPS
differently.

4.5. Limitations

While this study raises neuroimmune processes as potential targets
and effectors of PCBs' neurotoxic effects, it also leaves several questions
for future study. Ongoing work is actively investigating whether the
relatively small effect sizes in gene expression translate into biologically
meaningful shifts in neuroimmune system function. In addition, we
used a single dose of a PCB mixture because of logistical considerations
associated with eight experimental groups. We estimated this dose to be
within the range of human infant exposure, but using multiple doses
and confirming animal body burdens is an appropriate next step. It
would also be interesting to investigate effects of non-Aroclor congeners
that now constitute 10% of the maternal human serum burden, on
average (Koh et al., 2015). While this Aroclor mixture does contain
many of the most common congeners recently detected in maternal
serum, non-legacy PCB 11 is not represented (Frame et al., 1996; Sethi
et al., 2019).

4.6. Relevance to human health

Overall, this study demonstrates that exposure to an en-
vironmentally relevant dose and mixture of PCBs early in life can lead
to later adolescent disruption in neuroimmune activity. Importantly,
these effects are observed predominately in males and in both basal and
LPS-challenged states in the hypothalamus and prefrontal cortex, re-
spectively. Thus, this work emphasizes the importance of assessing ef-
fects of any possible immunotoxin on both male and female subjects, as
to not miss sex-specific effects that may provide insights into mechan-
isms of action. Chronic neuroinflammation, oxidative stress, or other
alterations in neuroimmune signaling are linked to neurodegenerative
disorders (Ghosh et al., 2013; Hickman et al., 2018; V.M. Miller et al.,
2009), mental illness (Dowlati et al., 2010; Howren et al., 2009; Hung
et al., 2014), and altered reward seeking behaviors (Cheng et al., 2016;
Hutchinson and Watkins, 2014; Kwon et al., 2017; Northcutt et al.,
2015). In addition to genes related to neuroimmune function, genes
related to both serotoninergic and dopaminergic systems were affected
in the current study. Importantly, depressive-like behavior is modulated
by dynamic cross-talk between microglia and serotonergic signaling
(Ledo et al., 2016), while adolescent social reward is dependent on
microglia and dopaminergic cell interactions (Kopec et al., 2018). The
development of neuroimmune systems seems particularly important to
later behavioral health (Nelson and Lenz, 2017b), as NF-κB has been
implicated in adolescence bipolar and major depressive disorder
(Miklowitz et al., 2016), and the sex-specific development of microglia
is linked to Alzheimer's disease and Autism Spectrum Disorder
(Hanamsagar et al., 2017). As such, neuroimmune dysfunction may be
one mechanism behind increased depressive-like symptomology in
humans exposed to PCBs (Fitzgerald et al., 2008), and an important
area for continued research.
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